Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 500 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible; and proofs will not generally be submitted to authors. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1955). 8, 592

The crystal structure of β-PuSi₂. By O. J. C. RUNNALLS and R. R. BOUCHER, Chemistry Branch, Atomic Energy of Canada Limited, Chalk River, Ontario, Canada

(Received 6 June 1955)

Plutonium silicides have been prepared by heating 150 mg. charges of plutonium trifluoride, 99.8% pure, mixed with the appropriate weight of silicon of 99.99% purity, in BeO crucibles at 5×10^{-5} mm. Hg. At 1300° C. the reaction was complete after 15 min. The resulting SiF₄ had distilled from the reaction zone, leaving a fluoride-

Table 1. Powder diffraction data for β -PuSi,

		55	• .	-
hk.l	$(\sin^2 \theta)_c$	$(\sin^2 \theta)_o$	I_o	I_c †
00.1	0.0357	0.0364	w	25.9
10.0	0.0525	0.0533	m	63.8
10.1	0.0882	0.0890	8	108-2
00.2	0.1427	0.1438	$oldsymbol{w}$	11.1
11.0	0.1576	0.1585	m	28.5
11.1	0.1932	0.1944	m-	15.7
10.2	0.1952	0.1965	<i>m</i> —	21.0
20.0	0.2101	0.2117	\boldsymbol{w}	9.3
20.1	0.2458	0.2469	m	$23 \cdot 1$
11.2	0.3002	0.3014	m	20.4
00.3	0.3210		Abs.	1.2
20.2	0.3528	0.3542	m —	8.0
21.0	0.3677	0.3677	w+	$7 \cdot 4$
10.3	0.3735	0.3744	w+	11.9
21.1	0.4034	0.4042	m	20.7
30.0	0.4727	0.4740	$oldsymbol{w}$	5.0
11.3	0.4786	0.4797	$oldsymbol{w}$	4.0
30.1	0.5084 \	0.5111	m	3.7
21.2	0.5104 ∫		770	9.7
20.3	0.5311	0.5320	w+	7.4
00.4	0.5706	0.5720	vw	1.5
30.2	0.6144	0.6158*	w+	8.1
10.4	0.6232	0.6247	vw	4.0
22.0	0.6303	0.6310	vw	4·1
22.1	0.6660	0.6677	w-	$3 \cdot 3$
31.0	0.6829	0.6836	vw	4.4
21.3	0.6875	0.6889*	m	13.6
31.1	0.7185	0.7188	m —	14·1
11.4	0.7282	0.7297	w+	8.5
22.2	0.7717	0.7720*	w+	9.1
20.4	0.7808	0.7822	w	4.9
30.3	0.7924	0.7929*	w+	4.0
31.2	0.8241	0.8248*	m	11.1
40.0	0.8404	0.8407	w-	2.8
40.1	0.8746	0.8743*	m	10.2
00.5	0.8916		Abs.	0.9
21.4	0.9368	0.9366*	m+	19-1
10.5	0.9426	0.9426*	m	15.3
22.3	0.9497	0.9497*	m	8.5

^{*} Cu $K\alpha_1$ reflection.

free Pu–Si product. The plutonium silicides prepared by this technique were hard and brittle, with silvery metallic lustre.

An X-ray powder pattern from a product containing 80 wt.% Pu, as determined by α -counting analysis, showed diffraction lines similar to those published by Zachariasen (1949) for body-centred tetragonal PuSi₂. A sample with a Si:Pu atom ratio of 3:1 showed diffraction lines of both PuSi₂ and Si. Heat treatment of the latter product for 1 hr. at 1150° C. failed to produce a change in the structure. Thus, a plutonium silicide isomorphous with the face-centred cubic USi₃ reported by Frost & Maskrey (1953) could not be formed.

Powder diffraction patterns obtained from Pu-Si products of approximate composition Pu₂Si₃, using Ni-filtered Cu radiation, showed a single hexagonal phase with lattice constants

$$a_0 = 3.884 \pm 0.003$$
, $c_0 = 4.082 \pm 0.003$ Å.

The line spacings and intensities were similar to those published for a uranium silicide, nominally of composition U_2Si_3 , but described by the formula β -USi₂ as a result of Zachariasen's X-ray analysis (1949). The Pu–Si phase has been labelled β -PuSi₂, to conform with the latter terminology.

The calculated density of β -PuSi₂, assuming one molecule per unit cell, is $9\cdot18$ g.cm.⁻³. Powder diffraction data are reported in Table 1, together with calculated intensities based on the following atom positions in space group $P6/mmm-D_{bh}^2$:

1 Pu in
$$(0, 0, 0)$$
,
2 Si in $(\frac{1}{3}, \frac{2}{3}, \frac{1}{2})$, $(\frac{2}{3}, \frac{1}{3}, \frac{1}{2})$.

Since the observed and calculated intensities are in reasonable agreement it may be concluded that β -PuSi₂ has the AlB₂ structure. Each plutonium atom is surrounded by twelve silicon atoms, at a distance of 3·03 Å. Each silicon atom is surrounded by six plutonium atoms and three silicon atoms with Si-Si = 2·24 Å. As pointed out by Zachariasen for β -USi₂, in this structural arrangement the silicon atoms form 'graphite layers' normal to the sixfold axis.

References

FROST, B. R. T. & MASKREY, J. T. (1953). J. Inst. Metals, 8, 177.
ZACHARIASEN, W. H. (1949). Acta Cryst. 2, 94.

 $[\]dagger \ I \propto |F|^2 p \, rac{1 + \cos^2 2 heta}{\sin^2 heta \, \cos heta} \; .$